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Abstract-The linear and non-linear stability of convection of a two-component fluid known as 
thermohaline convection is considered in a horizontal porous layer heated from below. The analysis is based 
on the Boussinesq-Darcy equations for 2-dim. convection under the assumption that the amplitudes of 
convection are small. The linear theory is based on the Fourier analysis and the critical Rayleigh numbers for 
both marginal and overstable motions are determined. It is found that a vertical solute gradient sets up 
overstable motions and a physical reason for this is given. The finite amplitude study is based on a truncated 
representation of Fourier series and the critical Rayleigh number is determined. The effects of Prandtl 
number, ratio of diffusivities and the permeability parameter on convection are studied. Nusselt number, Nu, 
and its analog Nu” for solute are calculated and it is found that the effect of Prandtl number is very weak in 

contrast to the existing viscous flow results. 

4 depth of the fluid layer; 

93 acceleration due to gravity; 
H, total heat transport ; 

CL gh = d (J g)/a (x, z), Jacobian ; 

k: 
unit vector in the z-direction ; 
permeability of a porous medium; 

K, the effective thermal conductivity of the 
porous medium; 

KS solute analog of K ; 
M,* = hJcMhc)* ; 
Nu, = Hd/KAT, Nusselt number; 
Nli", = d/K& solute Nusselt numbers; 

PY = p, + ipi(p,,pi > 0), frequency; 
p, dynamic pressure ; 
p;‘, = d2/k, porous parameter; 

% = (u, u, w), mean filter velocity of the fluid; 
R, = a,gATd3/vrc, thermal Rayleigh number; 

4, = agAsd3/vK, solute Rayleigh number; 
SC, = V/K,, Schmidt number; 

T, temperature ; 
T,, To, temperatures of hot and cold walls; 

Ts, 7-r> temperatures of the solid and liquid phase ; 
x, Y, z, space coordinates; 

VZ, az/a.? + d2/ay2 + a2/az2. 

NOMENCLATURE 

Greek symbols 

a, the horizontal wave number ; 
%v solute analog of a,; 

% the thermal expansion coefficient; 
K, = K/(p,c),, thermal diffusivity ; 
Ks, solute analog of K; 

V, the kinematic viscosity of the fluid ; 

PO? the mean density; 

t Leave of absence from the Technical University of 
Munich, Germany. 

(PC*), (PC),, (PC),, heat capacities of the porous 
medium, fluid and solid, (PC)* = Em + 

(1 - E)(W),; 
‘5, ratio of diffusivities; 
0, = V/K, Prandtl number; 

$9 
porosity of the medium ; 
stream function ; 

62 = n2(a2 + 1). 

1. INTRODUCTION 

CONVECTIVE hydrothermal reservoirs, the most ac- 
cessible and well characterized of geothermal re- 
sources, are highly permeable where heat and mass 
transport exist simultaneously. Despite decades of 
effort, no satisfactory physical or mathematical model 
exists to study these reservoirs [l]. Any adequate 
reservoir model would include combined heat and 
mass transport in a porous medium. 

Copious literature [2] is available on the problem of 
onset of linear and non-linear convection of a single 
component flow of fluid in a porous medium. A 
substantial body of literature concerning heat and 
mass transport in a porous medium also exists. Much 
of this work relates to the production of crude oil, 
particularly with regard to in situ combustion [3] and 
hot fluid injection or steam feeding [l]. The most 
significant phenomenon for oil production, however, is 
not the same as for steam production. Therefore, the 
literature related to crude oil production is not directly 
applicable to the modelling of hydrothermal systems 
and hence one has to develop a different model by 
considering natural convection of two-component 
fluid (known as thermohaline convection) through a 
porous medium. Here, the buoyancy can arise not only 
from density differences due to variations in tempera- 
ture but also from those due to variations in solute 
concentration. Therefore, the setting up of thermo- 
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haline convection in the present analysis will depend 
upon the destabilizing or stabilizing solute gradient 
as in the case of viscous flow (i.e. in the absence of a 
porous medium) [4,5]. In the case of the destabilizing 
solute gradient, the configuration becomes unstable 
because the diffusivity of heat is usually much greater 
than the diffusivity of the solute and hence a displaced 
particle offluid loses any excess heat more rapidly than 
any excess solute. The resulting buoyancy force may 
tend to increase the displacement of the particle from 
its original position and thus cause instability. The 
same effect may also cause overstability and finite 
amplitude motions. The case of the stabilizing vertical 
solute gradient in a layer offluidcan serve to inhibit the 
onset of convection when the fluid is heated from 
below for, the Darcy resistance together with the 
potential energy released by the horizontal tempera- 
ture gradient are balanced in the absence of inertia (i.e. 
infinitesimal motion) and local acceleration. The lar- 
ger the vertical solute gradient the less the potential 
energy released for a given horizontal temperature 
gradient to balance with the Darcy resistance. There- 
fore, the cells will be closer. The same effect may also 
cause overstability and finite amplitude motions. 

The first linear stability analysis of thermohaline 
convection in a porous medium was performed by 
Nield [6] and gives the criteria for the existence of 
steady and oscillatory thermohaline convection. Re- 
cently, Rudraiah er al. [7] have presented a detailed 
linear stability analysis of thermohaline convection in 
a porous layer and have predicted the region of 
instability via salt-finger and diffusive regimes. The 
linear theory discussed in [6] and [7] can predict only 
the conditions for the onset of steady and oscillatory 
convection and is silent about the heat transport 
process, because the linear theory cannot predict the 
amplitude of motion which is the realm of non-linear 
theory. The non-linear thermohaline convection is 
comparatively a recent development (see [S]) and has 
not been given much attention in the case of a porous 
medium. The chief aim of this paper, therefore, is to 
consider the non-linear thermohaline convection in a 
porous medium subject to finite amplitude motion 
with the object of studying heat transport process. The 
study is based on the local non-linear stability analysis 
which is pivoted on the linear theory and in the present 
paper we concentrate only on the truncated repre- 
sentation of Fourier analysis as explained in [9] and 
[lo]. S~cifically the form ofvelocity, temperature and 
concentration fields are represented by the linear 
marginally stable modes plus the first distortion of 
these modes by the non-linear interaction. No other 
modes are admitted in the representation. The result- 
ing non-linear equations for the model amplitudes are 
then solved on the assumption that the motion is 
steady. Although such an approach involves a drastic 
simplification of the form of flow fields, especially if the 
analysis is extended to a value of the Rayleigh number 
far from the critical value, it does give a physical insight 
with minimal mathematics. Further, the results of such 

a study will be useful in the discussion of the fully non- 
linear problem. 

We also note that in the laboratory experiments the 
effect of concentration gradients is believed to be small 
since the thermal conduction in a packed bed is usually 
much more important than the concentration 
diffusion which only occurs through the void fraction. 
In geothermal applications, however, the salinity is as 
high as 2.5 x 10” p.p.m. (see [ll]). Therefore, to 
demonstrate the effects of these on heat transport 
processes, we consider in this paper a specific example 
of the aqueous system, heat-sucrose, for which 

K=1.4x10-3cm2s-‘, K,=0.45~10-~cm~s-‘, 

P, = 10 and r z 0.32 = LO-“‘. 

For such a system R, is usually > 107. 

2. MATHEMATICAL FORMULATION OF THE 
PROBLEM 

Our discussion is based on an analytical model. The 
configuration of the convective hydrothermal reservoir 
to be considered is a horizontal porous layer of 
uniform thickness ci, permeability k, porosity c and of 
infinite extent, subject to an adverse temperature 
gradient AT and a stabilizing concentration gradient 
AS. A Cartesian coordinate system has been taken 
with the origin in the lower boundary and the z-axis 
vertically upwards. The layer is bounded by two 
parallel plates at z = 0 and z = d. The upper plate z = 
d is at constant temperature (T, - AT) and con- 
centration (S, - AS), whereas the lower plate z = 0 is 
at temperature T, and concentration S,. We write the 
total temperature and solute con~ntration as 

T Iota1 = T, - A7’; + 7-(x, I’, Z, r), 

(1) 
S rota, = S, - AS; + S(x, y, z, r) 

where the first two terms on the right-hand side 
represent the quiescent state and the last term is due to 
the convective redistribution. 

The boundaries are taken to be dynamically free in 
the absence of surface tension and are also perfect 
conductors of heat and solute. The governing equa- 
tions of motion following [2] are: 

the conservation of momentum 

the conservation of mass 

v.q=o, 

the conservation of energy 

(pee)* z + (Poc)r(q .V)T = KV’T, 
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the conservation of mass flux 3. LINEAR STABILITY ANALYSIS 

as 
at + (q . V) s = K,VZ s, (5) 

the equation of state 

P = Po[l - a,(T - 7-o) + %(S - f%)l. (6) 
Here K is the effective thermal conductivity of a fluid in 
the presence of solid matrix which is the sum of the 

stagnant thermal conductivity due to molecular 
diffusion and thermal dispersion coefficient due to 
mechanical dispersion. K, is the solute analog of K. As 

far as the thermal equation isconcerned, having a given 
thermal and hydrodynamic state with a motionless 
fluid phase, i.e. quiescent state for any geometrical 
point and its associative representative volume, we 
have to average temperatures T, and T, under the 
assumption that T, = T, = T. The same explanation 
holds for the concentration equation also. This is valid 
when both, solid and fluid phases are well dispersed 
and if the velocities involved are not too high. This is 
usually the case in most of the aquifers in geothermal 
regions. Equations (2)-(5) on making use of the 

equation of state (6) are made dimensionless using 

The chief aim of this paper is to study the finite 

amplitude thermohaline convection using the local 
non-linear stability analysis [9] which is pivoted on the 
linear theory. In this section, we therefore discuss the 
linear stability analysis briefly considering both mar- 
ginal and overstable states. A simple physical argu- 
ment is given for the existence of overstable motions. 

The linear stability problem is obtained by setting 
the Jacobian terms in equations @-(lo) to zero. 

We look for the solutions of the form 

$I _ ePt sin 7m.x sin nz, 

T, S - eP’ cos nux sin rrz.1 
(13) 

Substituting these into the linearized equations of 
@-(lo) and after some simplification we obtain the 

dispersion relation 

p3 + p2 

f~3~Mt-p 

a7Md4 

q = ;q<, T = T’AT, S = S’AS, 

(7) 

+ a2n2aM(R, - 7R) + p = 0. 
I 

$ = g, (x, z) = d(x’, z’), t = d’/ic . t’. 

Eliminating the pressure by appropriate cross- 

differentiation of the momentum equation and for 
simplicity neglecting the primes we get 

If p is real, marginal instability occurs when p = 0, i.e. 

when 

R = R’ = R$r f 64/a2n2P,. (15) 

The minimum value of R, denoted by R”,, occurs at 

and its value is 

cc=1 (16) 

(u-‘;++ -Rg 

+ 4; + u- ’ J(ll/, V’$), (8) 

(h-~&V)T+~=J(+,T), (9) 

a 

C ) 

_- 
at 

sv’ s + g = J(l), S) (10) 

where the stream function Ic, is defined as 

ati a+ 
u=z> 

w= -ax 
(11) 

and the other quantities have their conventional 
meanings. 

In the case of porous media the thermal Rayleigh 
number usually involves the permeability k, whereas in 
the present analysis it is defined independent of k. 
Further, R, is defined with K rather than K, in the 
denominator. 

The boundary conditions are 

a+b=T=S=O at z=O,l. (12) 

(14) 

R’, = R$r $ 47c2/P, (17) 

which is exactly the value given by [4] in the limit of R, 

+ ‘~1. Further, we note that when t -+ X, or R, -+O (i.e. 

single component fluid), equation (17) leads to 

4n2 
RF---, 

P, 
(18) 

the value given by Lapwood [12]. 
In the case of single component linear stability 

problem, the horizontal temperature gradient of the 
perturbed field releases potential energy and the latter 
is balanced by Darcy resistance offered by the solid 
particles to the fluid. Thermally, the upward con- 
vection of warm fluid is balanced by the diffusion of the 
excess of temperature. In these simple balances the 
mean filter velocity and temperature fields are in phase 
and no restoring force exists; and hence the principle 
of exchange of stability is valid even in the case of 
convection through a porous medium. In the case of 
two-component fluid through a porous medium, how- 
ever, the principle of exchange of stability is valid 
only in certain cases as explained below. The con- 
centration field generates a salinity gradient which in 
the case of linear steady analysis describes a balance 
between the sum of horizontal temperature gradient 



and Darcy resistance, see equation (8). This balance is 
complete because we consider the usual Darcy equa- 
tion in which the viscous force vV2q is replaced by 
-(v/k)q. However, the inhibition of convection by 
concentration field is clearly traceable to the salinity 
gradient because, a good part of the force which 
releases potential energy is now balanced by the 
concentration constraint. The Iarger the concen- 
tration, the Iarger the salinity gradient. Hence Iess 
potential energy is released for a given horizontal 
temperature gradient. Therefore, time-dependent mo- 
tions of various types can exist in a two component 
fluid through a porous medium because the con- 
centration field can act as a restoring mechanism. This 
time-dependent motion involves a partial balance 
between the local acceleration and the salinity gradient 
and hence less salinity gradient is available to offset the 
horizontal temperature gradient. Convection can 
therefore be maintained for a smaller imposed tem- 
perature difference in the case of overstable motion. 
For overstable motions p = p, + ip,. Substituting this 
into (14) and separating the real and imaginary parts 
we obtain 

-I- a2t) + S4Mz 1 

and 

pf = g-,,,M + r) 
I 

-I- ~?MT - F(MR - RJ. (20) 

Since pf > 0, a necessary condition for the existence of 
overstable motion is 

We note that the analytical determination of the 
minimum wave number is mathematically tedious and 
is determined numerically. The effect of R, on the 
thermal Rayleigh number is studied in Fig. i for 
different values of e, P, and Z. 

As R, --+ x, the asymptotic behavior of R” and pf are 

R”-+ 
R&J27 + a/P,) 

N(52M + a/P>) 
,&I;+-p-- oa2nZW - ~1 R, 

@A4 + a/P,) 

t22j 

which shows that r < M and 

R” (6% + qT,f 

ii-) M(6’M + G/P,)’ 
(23) 

4. FINITE AMPUMJDE STEADY CONVECTION 
WITH A LIMITED REPRESENTATION 

For flows with R > R”,, the linear stability analysis 
is not valid and one has to take into account the non- 
linear effects. In this section, we consider the non- 
linear stability of ~nv~tion of a two#m~nent fluid 
saturated porous layer using a severely truncated 
representation of Fourier series considering only two 
terms. Such a study is very useful to understand the 
physical m~hanism with a ~njrnurn amount of 
mathematical analysis and the results can also be used 
as the starting values while discussing the fully non- 
linear problem. 

The stability problem has a steady solution whose 
form is given by equation (24) with p = 0 for $, 1” and 
S. The first effect of non-linearity is to distort the 
temperature and concentration fields through the 
interaction of $ and T, and $ and S respectively. The 
distortion of the tem~rature and concentration fields 
wilf correspond to a change in the horizontal mean, i.e. 
a component of the form sin 2x2 will be generated. 

Therefore, the minimal system which describes finite 
amplitude convection of a two~omponent fluid satu- 
rated porous Iayer is given by 

$ = .4(t) sin affx sin nz, 

T = B(t) cos ncl~ sin 7rz + 

S = D(t) cos 7caz sin 712 -t 

(24) 

C(t) sin 2rrz, (25) 

E(t) sin 2nz, (26) 

where the amplitudes A, B, C, D and E can generally be 
functions of time f, and are to be determined by the 
dynamics of the system. Substituting the expressions 
(24))(26) into equations (8)-(~0) and equating the 
coefficients of sinnax sin xz, cos aas sin xz etc., and 
assuming the amplitudes are steady (i.e. setting iY/dr = 
0) we obtain the following set of equations as the 
deterministic set for the steady amplitudes: 

c + naRB - mR,D = 0, 
PI 

ij2B + ncld + n2aAC = 0, 

-4n2C f $n%AB = 0, 

d2D + nad -+ z2aAE = 0, 

-47&E + +z%AD = 0. 

(27) 

(28) 

(29) 

(30) 

(31) 

These steady solutions are very useful because they 
predict that a finite amplitude solution to the system is 
possible for subcritical values of the Rayleigh number 
and that the minimum values of R for which a steady 
solution is possible lies below the critical values for 
instability to either a marginal state or an overstable 
int%-ritesimal perturbation. Elimination of all ampli- 
tudes, except for A, yields after some algebraic 
simpIi~~ation 
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+ act4(rR, - R) 

+ ~t~7~(R$7 - R) II = 0. (32) 

The solution A = 0 corresponds to pure conduction, 
which we know to be a possible solution though it is 
unstable when R is sufficiently large. The remaining 
solutions are given by 

A2 -b f [b2 + 4a2a66272(R - Rc)]‘/2 
-= 
8 2au4cs/P, 

(33) 

where 

(Rr-r-‘R)+& 1 m472. 

I 

Only the solution with the positive sign in front of the 

radical is admissible, otherwise A2 is negative, i.e. the 
amplitude of the stream function is imaginary. 

Consider the case where finite solutions exist for R 

< R’ for a given R,, CT and 7. The minimum value of R 
for which solutions exist is denoted by R’, which makes 
the radical vanish provided that the first term on the 
right-hand side of equation (32) be non-negative. The 
radical vanishes provided that 

R’ = (34) 

With thisvalue of R’, amplitudes are real provided that 

_ < aZR, (1 - .r2) 1 

P, 62 73 
and r2<1. (35) 

We note that R’,, the minimum value of R’ at which a 
steady finite amplitude solution can exist, occurs at 
a2 = 1 and its value is 

R’, = [(TR,)‘~~ + 277&l - t’)/P,]‘. (36) 

We note that for a single component fluid R, - 0 and 

I 
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FIG l(a). Values of R’, R” and R’ are plotted as functions of 
R, for the case CT = 10, T = 10’ and P, = 0.01. 

FIG l(c). Values of Rc, R” and R’ are plotted as funcuons of 
R, for the case CJ = 1, T = 1O-“2 and Pi = 0.01. 

log R, 

FIG. l(b). Values of R’. R” and R’ are plotted as functions of 
R, for the case CJ = 10, z = 10-l and Pi = 0.001. 

hence R’, - 4n21P, which is the value of R’,. In other 
words in that case both R’, and R’, coincide and hence 
subcritical instabilities are not possible and the prin- 
ciple of exchange of stability is valid. To show that 
subcritical instabilities are possible in the case ofa two- 
component fluid, we compare the values of R”,, R”, and 

Rk in Fig. 1. The above results are presented in Fig. 1, 
for 7 = lo-‘, 0 = 10 and P, = lo-’ to 10m6 

(approximately the values of salt water), and 7 = 
lo- 1:2, ~7 = 1 for the same values of P,. 

Figure 1 predicts the effect of the stabilizing gradient 
of the solute on the destabilizing adverse temperature 
gradient. It is evident that, for small values of R,, the 

effect of vertical gradient of the solute on the onset of 
convection is small and the results are close to those of 
[12], for a single component fluid. As R, is increased, 
R’,, R”, and R’, approach asymptotic values for large 
R,. Also, the results shown in Fig. l(e) and l(f) indicate 

3 / 
- /R=R, 
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log Rs 

FIG. l(d). Values of R’, R” and R’ are plotted as functions of 
R, for the case 0 = 1, T = lo-“* and P, = 0.001. 

that the value of R, has to be sufficiently large (2 10’) 
for the present Darcy-Boussinesq models and the effect 
of l/P, is to increase the values of R. For very small 
values of P,( = lo-*) curves are similar to the viscous 
case. The line R = R, corresponds to the curve of 
neutral buoyancy. This corresponds to the specific 
example of aqueous system heat-sucrose mentioned at 
the end of section 1. 

5. HEAT TRANSPORT BY CONVECTION 

In geothermal regions, the meteoric water percolat- 

ing down to depth in a permeable formation is heated 
directly or indirectly by the intruded magma and is 
then driven buoyantly upward to the top of the aquifer 
where it can be trapped through drill holes. Therefore, 

IO 

3 4 5 6 7 8 9 IO I, I2 I3 14 

log Rs 

FIG. l(e). Values of R’, R” and R’ are plotted as functions of 
R, for the case D = 10, T = lo-’ and Pi = 10m5. 

5 
/ 

/R= R, 

4 / 

3 / 
/ 

/ 1 I / 

2 345678910ll213 

Log R, 

FIG. l(f). Values of R’. R” and R’ are plotted as functions of 
R, for the case- CT = 10, T = lo-’ and Pi = 10e6. 

in the study of thermohaline convection the deter- 
mination of heat transport across the layer plays a 

very important role. Here, the onset of convection as 
the Rayleigh number is increased is more rapidly 
detected by its effect on the heat transfer. In the 
quiescent state, the heat transfer is usually due to 
conduction (radiative heat transfer is usually neglec- 
ted). Hence if H is the rate of heat transfer per unit area 

(37) 

where the angular bracket ( ) corresponds to a 
horizontal average with the definition of T,,,,, given by 
equation (1). Equation (37) can be written in the form 

n 

H 

FIG. 

13- RC 
R0 

12- Rf 

II - 

IO - 

9- 

8- 

7- / 

/ 

6- 
/ 

/R=R, 

5- / 

/ 

2 3 4 5 6 7 8 9 IO II 12 13 

log Rs 

I(g). Values of R’, R” and R’ are plotted as functions of 
R, for the case CT = 1, T = lO_” and Pi = lo-’ 
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with restriction N = 2. The second term on the right- 
hand side of (38) represents that the heat which enters 
at the bottom by conduction iscarried on to the top by 
both conduction and convection and hence the heat 
transfer increases above that given by conduction 
alone. This process can be explained physically by the 
relationship between the driving temperature 
difference AT and the heat transport. In dimensiontess 
variables this is the Ray~ejgh-~us~lt number curve. 
The Nusselt number Nrt, is the ratio of the heat 
transported across any layer to the heat which would 
be transported by conduction alone. Thus from equa- 
tion (381, the Nusselt number is 

Nu = g = 1 - i nnb,, = 1 - 2lrc (39) 
n=l 

with N = 2. Similarly, the solute Nusselt number NtP, 
is defined by 

where .R, C, D and E are given by equations (27)~(31). 
For Rayleigh numbers below the critical value, the 
heat transport is purely by conduction for which A = 0 
and B, C, D and E are all zero. in that case equations 
(39) and (40) show that Nu and Nu” have to be unity. 

Our object in this study is to determine the effect of 
the stabilizing gradient of the solute on the destabiliz- 
ing effect of the adverse temperature gradient. For 
example, this may correspond to a situation where 
cold fresh water is injected into the geothermal re- 
servoir containing relativefy hot salty water below. The 
resuits on stability analysis given in sections 3 and 4 
clearly outline the magnitude ofthe efkcts of R,. Thus, 
when R, is sufficiently smaff (much less than R, = 
4n2/PI, the critical Rayieigh number for Lapwood 
convection with no solute present), the effect of the 
solute is to modify the results for Capwood convection 
by only a small amount. As R, is increased to this order 
of R,, the value of R at which the various types of 
instability can first occur also increase and as R, 
becomes very large, the values of R”, R” and R’ 

approach asymptoticatiy to the values given by equa- 
tioiis(l~~.(Z2~and(~~~res~ct~ve~y. In thepureviscous 
flow case of Veronis [4] the exact behaviour of the 
system as a function of R, depends upon r as we11 as cr. 
Whereas in the present case, the behaviour of the 
system as a function of R, depends upon z and P,, and 
the heat transport is independent of CF. 

In Table 1, the values of NuS and Ntr (with Nu” the 
upper value in each pair) for T = lo- ’ /2, z - 2’” 1 :2, R, 

= 107 and P, = 10m5 are tabulated and they are 
independent ofo. As R becomes large, the values of Nu* 
and Nu are seen to approach those with no stabihzing 
gradient (R, = 0) for t = lo- ’ ‘2. The system settles 
into a steady convective pattern for all R > 7 x 106. 
We see from the tabte that R = 7 x IO” corresponds to 
conduction and the amount of heat and solute con- 
vected by steady modes increase with R. We also note 

Table 1. Nu’ and Nu vs R and T 

R 7 z%z 10-t,* T = 2-‘2 

i.oooo 
l.oooo 

u.xloo 
i.oooo 
Loo00 
i.oooo 
2.1126 
1.2228 
2.5822 
1.5493 
2.7261 
I,7745 
2.9023 
2.3215 
2.9357 
2.5198 
2.9655 
2.7014 

1.0000 1.0000 
1.ooQo 1.0000 

Loo00 2.2495 
Loo00 1.2854 
Loo00 2.6f52 
Loo00 I.591 3 
t.0000 2.7493 
l.oooO 1.8046 
l.oot33 2.8051 
l.oooo 1.9618 
1.0000 2.0437 
1.CMlOO 2.0824 
1.4312 2.8695 
1.2416 2.1779 
2.4880 2.9297 
2.1847 2.4665 
2.6845 2.9508 
2.455f 2.5972 
2.8246 2.9696 
26776 2.7332 

- 

R, = 0 
~ =.10-1’2 

R” = 15194942.27. 

that the effect of r is to decrease the values of Nu and 
NM”, and when R, =I 0, the conduction range is much 
smaller. 

Since R’ is always suficiently lower than that of 
R’( =35570634), we note that the dependence of Nu 
and Ails” on D is very weak and aiso instability is first 
manifested as a finite amplitude steady mode for all o. 
The variation of Nu and Ntr’ with R is not much. In al1 
cases we note that NuS > Nu. 

Finally we conclude that, although the presence of a 
stabilizing gradient of solute will serve to inhibit the 
onset of convection, the strong finite amplitude mo- 
tions which exist for large Rayleigh numbers tend to 
mix the solute and distribute it so that the interior 
layers of the fluid are more neutrally stratified. When 
this happens, the inhibiting effect ofthe solute gradient 
is greatly reduced and the fluid can convect nearly as 
much heat as it does in the absence of the solute. 
Therefore, we see that the last cohmn in table which 
gives the Nusselt number for no sotute present coin- 
cides with the other columns when R is brge. 
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CONVECTION D’AMPLITUDE FINIE DANS UNE COUCHE POREUSE SATUREE PAR UN 
FLUIDE A DEUX COMPOSANTS 

Resume-La stabilite liniaire et non lindaire de la convection par un fluide a deux composants, connue 
comme convection thermohaline est considtrte dans une couche poreuse horizontale chauffee par le bas. 
L’analyse est basee sur les equations de Boussinesq-Darcy pour la convection bidimensionnelle avec 
I’hypothtse que les amplitudes de la convection sont petites. La theorie lineaire est basee sur l’analyse de 
Fourier et les nombres de Rayleigh critiques sont determines pour les mouvements marginaux et surstables. 
On trouve qu’un gradient vertical de solute accompagne des mouvements surstables et on en donne 
d’explication physique. L’etude de I’amplitude finie est basee sur une representation tronquee. des series de 
Fourier et le nombre de Rayleigh critique est determine. Les effets du nombre de Prandtl, du rapport des 
diffusivites et du paramdtre de permtabilite sur la convection sont etudies. Le nombre de Nusselt Nu et son 
analogue Nu’ pour le solute sont calculis et on trouve que I’effet du nombre de Prandtl est trts faible en 

contraste des resultats de l’icoulement visqueux existant. 

KONVEKTION MIT ENDLICHER AMPLITUDE IN EINER PORGSEN SCHICHT, DIE MIT 
EINER AUS ZWEI KOMPONENTEN BESTEHENDEN FLUSSIGKEIT GESATTIGT IST 

Zusammenfassung-Die lineare und nichtlineare Stabilitlt der Konvektion einer aus zwei Komponenten 
bestehenden Flussigkeit, die als thermohaline Konvektion bekannt ist, wird in einer porbsen, von unten 
heheizten Schicht betrachtet. Die Losung basiert auf den Boussinesq-Darcy-Gleichungen fur zweidi- 
mensionale Konvektion tuner der Annahme, dal3 die Amplituden der Konvektion klein sind. Das lineare 
Verfahren basiert auf der Fourier-Analyse, und die kritischen Rayleigh-Zahlen werden sowohl fur marginale 
wie tiberstabile Bewegungen bestimmt. Es wird festgestellt, da8 die Zunahme der Konzentration des 
geldsten Stoffes mit der Hohe zu iiberstabilen Bewegungen fiihrt, und es wird eine physikalische Begrilndung 
dafur angegeben. Die Untersuchung fur endliche Amplituden basiert auf einer abgebrochenen Fourier- 
Reihen-Entwicklung, wodurch die kritische Rayleigh-Zahl bestimmt wird. Die Einfliisse der Prandtl-Zahl, 
des Verhaltnisscs der Diffusionskoeflizienten und der Permeabilitatsparameter auf die Konvektion werden 
untersucht. Die Nusselt-Zahl Nu und deren Analogon Nu fur geloste Stoffe werden berechnet und gefunden, 
da13 der EinfluB der Prandtl-Zahl im Gegensatz zu bekannten Ergebnissen fur zahe Stromung sehr gering ist. 

KOHBEKHMII KOHEYHOH AMl-lJlMTY~bI B IlOPMCTOM CJIOE, HACbHlIEHHOM 
flBYXKOMflOHEHTHOH )KKMflKOCTblO 

AHHorauwa- npOBeAeH0 HcCneAOBaHHe nHHei?HOli M HenHHeirHOti yCTOi%H,BOCTH KOHBeKUHH ABYX- 

KOMnOHeHTHOti XWAKOCTti B HarpCBZMOM CHA3Y rOpH30HTanbHOM HOpHCTOM CnOe. AHanHs OCHOBaH 

Ha ypaaHeHHax 6yccHHecKaa~apcHA.n*AByXMepHO~ KOHBCKUHH B npennono~eHHH Manblx aMnneTyn. 

B pe3ynbTaTe nHHeAHor0 aHanH3a no MeTony @ypbe onpenenetibl xpnruqecxrie 3naqeuus wicna Penes 
KaK JL"s UpeAenbHbIX, TaK H CBepXyCTOkHBblX ABH~eHH8. HaAneno, 'iTO BepTHKanbHbrfi rpaAAeHT 

paCTBOp,lMOCTB TTpHBOAHT K yCTaHOBneHHm CBepXyCTOiiYHBblX ABWKeHHti H AaHO $HSH'teCKOe 060- 
CHOBaHAe 3TOrO RBneHHs. MCCneAOBaHHe KOHBeKUHH KOHeHHOii aMHnHTyAb1 upOBeAeH0 C uOMOmbK3 

yceHeHHbTx pnAoB Qypbe. OnpeAeneHo KpHTwecKoe 3HareHHe wcna Penes. MccneAoBaHo anHaHHe 

HHCna t,paHATns, OTHOtUeHHR KO3+$HutHeHTOB AH@,TyJHH M HapaMeTpa upOHHUaeMOCTH Ha KOHaeK- 

uuto. PaccvHTaHbl3HaHeHHs qucna HyccenbTa Nu H ero aHanOra Nu‘ AnR paCTBOpeHHOr0 BemeCTBa 

H HaiiAeHo. HTo snHsHHe HHcna IIpaHATnn HecymecTBeHHo no cpasHeHHm co cnyraeM TeHeHHs 

Bs3KHX XWAKOCTefi. 


