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Abstract—The linear and non-linear stability of convection of a two-component fluid known as
thermohaline convection is considered in a horizontal porous layer heated from below. The analysis is based
on the Boussinesq—Darcy equations for 2-dim. convection under the assumption that the amplitudes of
convection are small. The linear theory is based on the Fourier analysis and the critical Rayleigh numbers for
both marginal and overstable motions are determined. It is found that a vertical solute gradient sets up
overstable motions and a physical reason for this is given. The finite amplitude study is based on a truncated
representation of Fourier series and the critical Rayleigh number is determined. The effects of Prandtl
number, ratio of diffusivities and the permeability parameter on convection are studied. Nusselt number, Nu,
and its analog Nu® for solute are calculated and it is found that the effect of Prandtl number is very weak in
contrast to the existing viscous flow results.

NOMENCLATURE
d, depth of the fluid layer;
g, acceleration due to gravity;
H, total heat transport;

J(f,g9), = 0(f,9)/0(x,z), Jacobian
, unit vector in the z-direction;
k, permeability of a porous medium;
K, the effective thermal conductivity of the
porous medium;
K, solute analog of K ;
M, = (poC)e/(poc)*;
Nu, = Hd/xAT, Nusselt number;
N, = d/kAs, solute Nusselt numbers;;
P = p; + ip(p,.p; > 0), frequency;
P, dynamic pressure;
P!, = d*/k, porous parameter;
q, = (u, v, w), mean filter velocity of the fluid ;
R, = aygATd*/vk, thermal Rayleigh number ;
R,, = agAsd® /v, solute Rayleigh number;
Sc, = y/k,, Schmidt number ;
T, temperature ;
Tm Ty, temperatures of hot and cold walls;
T, Ty, temperatures of the solid and liquid phase;
x,y,z, space coordinates;
L% d*jox? + 32/0y? + 8%/oz.

Greek symbols

o, the horizontal wave number

O solute analog of oy ;

o, the thermal expansion coefficient ;
K, = K/(pyc);, thermal diffusivity;

Ky solute analog of «;

v, the kinematic viscosity of the fluid;
Pos the mean density;

T Leave of absence from the Technical University of
Munich, Germany.

(pc*), (pc)k, (pc),, heat capacities of the porous
medium, fluid and solid, (pc)* = &(pc); +
(1 = e)pc)s;

1, ratio of diffusivities;

o, = v/k, Prandtl number;
& porosity of the medium;
v, stream function ;

8 =n}a? + 1)

1. INTRODUCTION

ConvecTIVE hydrothermal reservoirs, the most ac-
cessible and well characterized of geothermal re-
sources, are highly permeable where heat and mass
transport exist simultaneously. Despite decades of
effort, no satisfactory physical or mathematical model
exists to study these reservoirs [1]. Any adequate
reservoir model would include combined heat and
mass transport in a porous medium.

Copious literature [2] is available on the problem of
onset of linear and non-linear convection of a single
component flow of fluid in a porous medium. A
substantial body of literature concerning heat and
mass transport in a porous medium also exists. Much
of this work relates to the production of crude oil,
particularly with regard to in situ combustion [3] and
hot fluid injection or steam feeding [1]. The most
significant phenomenon for oil production, however, is
not the same as for steam production. Therefore, the
literature related to crude oil production is not directly
applicable to the modelling of hydrothermal systems
and hence one has to develop a different model by
considering natural convection of two-component
fluid (known as thermohaline convection) through a
porous medium. Here, the buoyancy can arise not only
from density differences due to variations in tempera-
ture but also from those due to variations in solute
concentration. Therefore, the setting up of thermo-
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haline convection in the present analysis will depend
upon the destabilizing or stabilizing solute gradient
as in the case of viscous flow (i.e. in the absence of a
porous medium) [4, 5]. In the case of the destabilizing
solute gradient, the configuration becomes unstable
because the diffusivity of heat is usually much greater
than the diffusivity of the solute and hence a displaced
particle of fluid loses any excess heat more rapidly than
any excess solute. The resulting buoyancy force may
tend to increase the displacement of the particle from
its original position and thus cause instability. The
same effect may also cause overstability and finite
amplitude motions. The case of the stabilizing vertical
solute gradient in a layer of fluid can serve to inhibit the
onset of convection when the fluid is heated from
below for, the Darcy resistance together with the
potential energy released by the horizontal tempera-
ture gradient are balanced in the absence of inertia (i.e.
infinitesimal motion) and local acceleration. The lar-
ger the vertical solute gradient the less the potential
energy released for a given horizontal temperature
gradient to balance with the Darcy resistance. There-
fore, the cells will be closer. The same effect may also
cause overstability and finite amplitude motions.
The first linear stability analysis of thermohaline
convection in a porous medium was performed by
Nield [6] and gives the criteria for the existence of
steady and oscillatory thermohaline convection. Re-
cently, Rudraiah er al. [7] have presented a detailed
linear stability analysis of thermohaline convection in
a porous layer and have predicted the region of
instability via salt-finger and diffusive regimes. The
linear theory discussed in [6] and [ 7] can predict only
the conditions for the onset of steady and oscillatory
convection and is silent about the heat transport
process, because the linear theory cannot predict the
amplitude of motion which is the realm of non-linear
theory. The non-linear thermohaline convection is
comparatively a recent development (see [8]) and has
not been given much attention in the case of a porous
medium. The chief aim of this paper, therefore, is to
consider the non-linear thermohaline convection in a
porous medium subject to finite amplitude motion
with the object of studying heat transport process. The
study is based on the local non-linear stability analysis
which is pivoted on the linear theory and in the present
paper we concentrate only on the truncated repre-
sentation of Fourier analysis as explained in [9] and
[10]. Specifically the form of velocity, temperature and
concentration fields are represented by the linear
marginally stable modes plus the first distortion of
these modes by the non-linear interaction. No other
modes are admitted in the representation. The result-
ing non-linear equations for the model amplitudes are
then solved on the assumption that the motion is
steady. Although such an approach involves a drastic
simplification of the form of flow fields, especially if the
analysis is extended to a value of the Rayleigh number
far from the critical value, it does give a physical insight
with minimal mathematics. Further, the results of such
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a study will be useful in the discussion of the fully non-
linear problem.

We also note that in the laboratory experiments the
effect of concentration gradients is believed to be small
since the thermal conduction in a packed bed is usually
much more important than the concentration
diffusion which only occurs through the void fraction,
In geothermal applications, however, the salinity is as
high as 25 x 10°p.p.m. (see [11]). Therefore, to
demonstrate the effects of these on heat transport
processes, we consider in this paper a specific example
of the aqueous system, heat—-sucrose, for which

K=14x10"%cm?s™!, K ,=045x10"
P,=10 and t7=x032=10"12%

Sem?sT,

For such a system R, is usually > 107,

2. MATHEMATICAL FORMULATION OF THE
PROBLEM

Our discussion is based on an analytical model. The
configuration of the convective hydrothermal reservoir
to be considered is a horizontal porous layer of
uniform thickness d, permeability k, porosity ¢ and of
infinite extent, subject to an adverse temperature
gradient AT and a stabilizing concentration gradient
AS. A Cartestan coordinate system has been taken
with the origin in the lower boundary and the z-axis
vertically upwards. The layer is bounded by two
parallel plates at z = Oand z = 4. The upper plate z =
d is at constant temperature (T,, — AT) and con-
centration {S,, — AS), whereas the lower plate z = Q1is
at temperature T, and concentration S, We write the
total temperature and solute concentration as

Ttoml = Tm - AT; + T(X, ¥s 2, t)a

, )
Stotal = Sm - AS; + S(X,y, Z t)
where the first two terms on the right-hand side
represent the quiescent state and the last term is due to
the convective redistribution.

The boundaries are taken to be dynamically free in
the absence of surface tension and are also perfect
conductors of heat and solute. The governing equa-
tions of motion following [2] are:

the conservation of momentum

oq Vp
Aiqvg=-L+2 f?—~q, )
ot Po  Po
the conservation of mass
V.q=0, (3)

the conservation of energy

orT
(poc)* s (Pock(q V)T = KVT, )
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the conservation of mass flux

(2_S+(q'V)S=KsV2 S, ®)
t

the equation of state
p = poll — ar(T — To) + a(S — Sp)].  (6)

Here K is the effective thermal conductivity of a fluid in
the presence of solid matrix which is the sum of the
stagnant thermal conductivity due to molecular
diffusion and thermal dispersion coefficient due to
mechanical dispersion. K is the solute analog of K. As
far as the thermal equation isconcerned, having a given
thermal and hydrodynamic state with a motionless
fluid phase, i.e. quiescent state for any geometrical
point and its associative representative volume, we
have to average temperatures T, and T; under the
assumption that T, = T, = T. The same explanation
holds for the concentration equation also. This is valid
when both, solid and fluid phases are well dispersed
and if the velocities involved are not too high. This is
usually the case in most of the aquifers in geothermal
regions. Equations (2)—(5), on making use of the
equation of state (6), are made dimensionless using

q= gq', T = T'AT, §=SAS,
(M

= ’ (X,Z) = d(x,’ Z,),
PoVK

t=d¥x -t

Eliminating the pressure by appropriate cross-
differentiation of the momentum equation and for
simplicity neglecting the primes we get

o 1 oT
L4 — VW= -—R—
<" ot Pl) v ox

+ Rsa—i + 6" LY, VH), (8)

)
<M’1£—V2>T+%=J(¢,T), )
(g - IV2>S Yo a0
where the stream function  is defined as
= e (1)

and the other quantities have their conventional
meanings.

In the case of porous media the thermal Rayleigh
number usually involves the permeability k, whereas in
the present analysis it is defined independent of k.
Further, R, is defined with « rather than x, in the
denominator.

The boundary conditions are

U=T=8=0 at

z=0,1. (12)
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3. LINEAR STABILITY ANALYSIS

The chief aim of this paper is to study the finite
amplitude thermohaline convection using the local
non-linear stability analysis [9] which is pivoted on the
linear theory. In this section, we therefore discuss the
linear stability analysis briefly considering both mar-
ginal and overstable states. A simple physical argu-
ment is given for the existence of overstable motions.

The linear stability problem is obtained by setting
the Jacobian terms in equations (8)-(10) to zero.

We look for the solutions of the form
i ~ eP'sin moux sin 7z, } (13)

T,S ~ e cos max sin 7z,

Substituting these into the linearized equations of
(8)-(10) and after some simplification we obtain the
dispersion relation

P +p2[ 2(M+r)+%}+p|iiéz(M +7)

1 Pl
2.2
+5“Mr—a;26(MR—RS)]

otM&* B

+ o«?’n?oM(R, — TR) +
P

0. (14)

If p is real, marginal instability occurs when p = 0, i.e.
when
R = R® = R/t + 5*/an?P,. (15)
The minimum value of R, denoted by R¢,, occurs at
a=1 (16)
and its value is
RS, = Ryt + 4n%/P, (17)

which is exactly the value given by [4] in the limit of R,
— o, Further, we note that when 7 — >, or R, —0(i.e.
single component fluid), equation (17) leads to
47
Ry} ——y,

1

(18)

the value given by Lapwood [12].

In the case of single component linear stability
problem, the horizontal temperature gradient of the
perturbed field releases potential energy and the latter
is balanced by Darcy resistance offered by the solid
particles to the fluid. Thermally, the upward con-
vection of warm fluid is balanced by the diffusion of the
excess of temperature. In these simple balances the
mean filter velocity and temperature fields are in phase
and no restoring force exists; and hence the principle
of exchange of stability is valid even in the case of
convection through a porous medium. In the case of
two-component fluid through a porous medium, how-
ever, the principle of exchange of stability is valid
only in certain cases as explained below. The con-
centration field generates a salinity gradient which in
the case of linear steady analysis describes a balance
between the sum of horizontal temperature gradient
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and Darcy resistance, see equation (8). This balance is
complete because we consider the usual Darcy equa-
tion in which the viscous force vW2q is replaced by
-{v/k)q. However, the inhibition of convection by
concentration field is clearly traceable to the salinity
gradient because, a good part of the force which
releases potential energy is now balanced by the
concentration constraint. The larger the concen-
tration, the larger the salinity gradient. Hence less
potential energy is released for a given horizontal
temperature gradient. Therefore, time-dependent mo-
tions of various types can exist in a two component
fluid through a porous medium because the con-
centration field can act as a restoring mechanism. This
time-dependent motion involves a partial balance
between the local acceleration and the salinity gradient
and hence less salinity gradient is available to offset the
horizontal temperature gradient. Convection can
therefore be maintained for a smaller imposed tem-
perature difference in the case of overstable motion.
For overstable motions p = p, + ip;. Substituting this
into (14) and separating the real and imaginary parts
we obtain

R{6%t + 6/P)

R R = M +aP)

M + r)[% (»g— + 8M + &%) + 5"M1]

1\ . (19
+ waleM{G*M + o/P) (19
and
2 M 41
P p ( )
2.2
+5*Mz =57 (MR=R). (20)

Since p? > 0, a necessary condition for the existence of
overstable motion is
64

‘TP, 20
x [Mr(? - i)—i— {t + M}(z — 2M — g;;;)}.&i}

We note that the analytical determination of the
minimum wave number is mathematically tedious and
is determined numerically. The effect of R, on the
thermal Rayleigh number is studied in Fig. 1 for
different values of ¢, P, and 1.

As R, — -r., the asymptotic behavior of R® and p} are

R(5%t + o/P,)

ou*n* (M ~ 1)
MM + oy

T (6®M + o/P) kR, @)

RO

which shows that 1 < M and

R* (8%t +a/P)

LA a
M(8*M + o/P)

R 23)

5
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4. FINITE AMPLITUDE STEADY CONVECTION
WITH A LIMITED REPRESENTATION

For flows with R > RS, the linear stability analysis
is not valid and one has to take into account the non-
linear effects. In this section, we consider the non-
linear stability of convection of a two-component fluid
saturated porous layer using a severely truncated
representation of Fourier series considering only two
terms. Such a study is very useful to understand the
physical mechanism with a minimum amount of
mathematical analysis and the results can also be used
as the starting values while discussing the fully non-
linear problem.

The stability problem has a steady solution whose
form is given by equation (24) with p = Ofor ¢, T and
S. The first effect of non-linearity is to distort the
temperature and concentration fields through the
interaction of Y and 7, and yr and § respectively. The
distortion of the temperature and concentration fields
willcorrespond to a change in the horizontal mean, ie.
a component of the form sin 2rz will be generated.

Therefore, the minimal system which describes finite
amplitude convection of a two-component fluid satu-
rated porous layer is given by

¥ = A{t) sin mox sin 7z, 24}
T = B(t) cos naex sin 7z + C(t) sin 2nz, (25)
S = D(t) cos naz sin 7z + E(t) sin 27z, (26)

where the amplitudes 4, B, C, D and E can generally be
functions of time £, and are to be determined by the
dynamics of the system. Substituting the expressions
(24)-(26) into equations (8)-(10) and equating the
coefficients of sinrax sin nz, cos rux sin 7z etc., and
assuming the amplitudes are steady (i.e. setting 8/t =
0) we obtain the following set of equations as the
deterministic set for the steady amplitudes:

?;l+ naRB — naR.D =0, 27y
3B + noed + nladAC =0, (28)
—472C + in*adB =0, 29)
152D + a4 + n*adE =0, {30}
—47*1E + inladD = 0. {31)

These steady solutions are very useful because they
predict that a finite amplitude solution to the system is
possible for subcritical values of the Rayleigh number
and that the minimum values of R for which a steady
solution is possible lies below the critical values for
instability to either a marginal state or an overstable
infinitesimal perturbation. Elimination of all ampli-
tudes, except for A4, yields after some algebraic
simplification

T A2 [o o
A= [— ) + | 521+ 77
{Pla (8) [Pl n? ( )
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2
+ go* (=R, — R)] <A?> +a(a? + 1)

x [‘S;—TZ + oa?t3(RJ1 — R)}} =0. (32)

The solution 4 = 0 corresponds to pure conduction,
which we know to be a possible solution though it is
unstable when R is sufficiently large. The remaining
solutions are given by

AZ —-b + [bZ + 40’2(16(521'2(R _ Rc)]l,'Z
8 200*8%/P,

(33)
where

64
b= [(R° —172R) + m]aa“tz.

Only the solution with the positive sign in front of the
radical is admissible, otherwise 42 is negative, i.e. the
amplitude of the stream function is imaginary.

Consider the case where finite solutions exist for R
< R°for a given R, ¢ and 7. The minimum value of R
for which solutions exist is denoted by Rf, which makes
the radical vanish provided that the first term on the
right-hand side of equation (32) be non-negative. The
radical vanishes provided that

, 00 A=)
f __ 122 — [
R = |:(1.’RS) +— / P ] .

With this value of Rf, amplitudes are real provided that
L 2R, (1 — 1?)
P, 5 3

(34)

2

and t° < 1. (35)

We note that Rf, the minimum value of R" at which a
steady finite amplitude solution can exist, occurs at
a? = 1 and its value is

R, =[(zR)'? + 2r/(1 — P2)/P )% (36)

We note that for a single component fluid R, — 0 and

log R

log Ry

F1G. 1{a). Values of R¢, R° and R" are plotted as functions of
R for the case ¢ = 10, t = 10% and P; = 0.01.

14

log R

log Rg

FIG. 1(b). Values of R, R® and R are plotted as functions of
R, for the case ¢ = 10,7 = 1072 and P, = 0.001.

hence Rf, — 4x?/P, which is the value of RS, In other
words in that case both R, and R, coincide and hence
subcritical instabilities are not possible and the prin-
ciple of exchange of stability is valid. To show that
subcritical instabilities are possible in the case of a two-
component fluid, we compare the values of RS, RS, and
Rf, in Fig. 1. The above results are presented in Fig. 1,
fort = 1072, 6 = 10 and P, = 1072 to 10°°
(approximately the values of salt water), and t =
107'2, ¢ = 1 for the same values of P,.

Figure 1 predicts the effect of the stabilizing gradient
of the solute on the destabilizing adverse temperature
gradient. It is evident that, for small values of R, the
effect of vertical gradient of the solute on the onset of
convection is small and the results are close to those of
[12], for a single component fluid. As R, is increased,
RS, R and RE approach asymptotic values for large
R.. Also, the results shown in Fig. 1(e)and 1(f) indicate

log R

log Ry

F1G. 1(c). Values of R, R° and R are plotted as funcuons of
R for thecase ¢ = 1,7 = 10”2 and P, = 0.01.
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log R

tog Rs

Fic. 1(d). Values of R®, R° and R' are plotted as functions of
R, for the case ¢ = 1,7 = 107}? and P, = 0.001.

that the value of R, has to be sufficiently large (> 107)
for the present Darcy—Boussinesq models and the effect
of 1/P, is to increase the values of R. For very small
values of P,(=1072) curves are similar to the viscous
case. The line R = R, corresponds to the curve of
neutral buoyancy. This corresponds to the specific
example of aqueous system heat—sucrose mentioned at
the end of section 1.

5. HEAT TRANSPORT BY CONVECTION

In geothermal regions, the meteoric water percolat-
ing down to depth in a permeable formation is heated
directly or indirectly by the intruded magma and is
then driven buoyantly upward to the top of the aquifer
where it can be trapped through drill holes. Therefore,

log R

log R

Fi1G. 1{e). Values of R°, R° and R are plotted as functions of
R, for the case 6 = 10,7 = 10 2 and P, = 1073
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log R

ar s
/
e
A R !
2 3 4 5 7 8 9 0O 1l 22 13 14

log Ry

F1G. 1(f). Values of R°, R® and R' are plotted as functions of
R, for the case ¢ = 10,t = 107 and P, = 107°,

in the study of thermohaline convection the deter-
mination of heat transport across the layer plays a
very important role. Here, the onset of convection as
the Rayleigh number is increased is more rapidly
detected by its effect on the heat transfer. In the
quiescent state, the heat transfer is usually due to
conduction (radiative heat transfer is usually neglec-
ted). Hence if H is the rate of heat transfer per unit area

¢
H = K<T T!mal>
oz -0

where the angular bracket { > corresponds to a
horizontal average with the definition of T, given by
equation (1). Equation (37) can be written in the form

37)

(38)

log R

log Ry

F1G. 1(g). Values of R, R° and R" are plotted as functions of
R for thecase 6 = 1,7 = 10" "2 and P, = 107°.
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with restriction N = 2. The second term on the right-
hand side of (38) represents that the heat which enters
at the bottom by conduction is carried on to the top by
both conduction and convection and hence the heat
transfer increases above that given by conduction
alone. This process can be explained physically by the
relationship between the driving temperature
difference AT and the heat transport. In dimensionless
variables this is the Rayleigh—Nusselt number curve.
The Nusselt number Nu, is the ratio of the heat
transported across any layer to the heat which would
be transported by conduction alone. Thus from equa-
tion (38), the Nusselt number is
N
Nu:{i‘izl— Y nmby, =1 - 2nC

n=1

39)

with N = 2. Similarly, the solute Nusselt number Nus,
is defined by

N
Nit=1-% nac,=1-2nE

r=1

(40}

where B, C, D and E are given by equations (27)-(31).
For Rayleigh numbers below the critical value, the
heat transport is purely by conduction for which 4 = 0
and B, C, D and E are all zero. In that case equations
(39) and (40) show that Nu and Nu® have to be unity.

Our object in this study is to determine the effect of
the stabilizing gradient of the solute on the destabiliz-
ing effect of the adverse temperature gradient. For
example, this may correspond to a situation where
cold fresh water is injected into the geothermal re-
servoir containing relatively hot salty water below. The
results on stability analysis given in sections 3 and 4
clearly outline the magnitude of the effects of R Thus,
when R, is sufficiently small {much less than R, =
4n?/P,, the critical Rayleigh number for Lapwood
convection with no solute present), the effect of the
solute is to modify the results for Lapwood convection
by only a small amount. As R, isincreased to this order
of R,, the value of R at which the various types of
instability can first occur also increase and as R,
becomes very large, the values of R®, R® and Rf
approach asymptotically to the values given by equa-
tions (17), (22)and (36} respectively. In the pure viscous
flow case of Veronis [4] the exact behaviour of the
system as a function of R, depends upon tas wellas o,
Whereas in the present case, the behaviour of the
system as a function of R, depends upon  and P, and
the heat transport is independent of o.

In Table 1, the values of Nu® and Nu (with Nu® the
upper value in each pair)fort = 107!, 1 = 2712 R_
= 107 and P, = 1073 are tabulated and they are
independent of 5. As R becomes large, the values of Nu®
and Nu are seen to approach those with no stabilizing
gradient (R, = 0) for t = 107! The system settles
into a steady convective pattern forall R > 7 x 10°%,
We see from the table that R = 7 x 10% corresponds to
conduction and the amount of heat and solute con-
vected by steady modes increase with R. We also note

721
Table 1. Nu*and Nuvs R and
R,=0
R T 072 g 2712 0712

4 x 10° 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000

5% 10° 1.0000 1.0000 2.2495
1.0000 1.0000 12854

& x 108 1.0000 1.0000 26152
1.0000 1.0000 1.5913

7 x 16¢ 1.0000 1.0000 2.7493
1.0000 1.0000 1.8046

8 x 10° 21126 1.0000 2.8051
1.2228 1.0000 1.9618

9 x 10° 2.5822 1.0000 20437
1.5493 1.0000 2.0824

107 27267 1.4312 2.8695
1,7745 1.2416 21779

1.519 x 107 29023 2.4880 29297
2.3215 2.1847 24665

2 x 1067 29387 26845 29508
25198 24551 25972

3 x 107 29655 28246 2.9696
2.7014 26776 27332

R® = 1515494227,

that the effect of 1 is to decrease the values of Nu and
Nu*, and when R, = 0, the conduction range is much
smaller.

Since R' is always sufficiently Jower than that of
R°{=35570634), we note that the dependence of Nu
and Nu® on o is very weak and also instability is first
manifested as a finite amplitude steady mode for all 6.
The variation of Nu and Nu® with R is not much. In all
cases we note that Nu* > Nu.

Finally we conclude that, although the presence of a
stabilizing gradient of solute will serve to inhibit the
onset of convection, the strong finite amplitude mo-
tions which exist for large Rayleigh numbers tend to
mix the solute and distribute it so that the interior
layers of the fluid are more neutrally stratified. When
this happens, the inhibiting effect of the solute gradient
is greatly reduced and the fluid can convect nearly as
much heat as it does in the absence of the solute.
Therefore, we see that the last column in table which
gives the Nusselt number for no solute present coin-
cides with the other columns when R is large.

Acknowledgement—This work is supported by U.G.C. spe-
cial assistance programme. One of us (R.F.) is grateful to the
Bangalore University for offering Visiting Professor’s post
and to the Technical University of Munich, for providing
sabbatical leave. His thanks are also due to Deutsche
Forschungsgemeinschaft for supporting travel.

REFERENCES
1. R. C. Axtmann and L. B. Peck, Geothermal chemical
engineering, AIChE JI 22, 817 {1976).
2. D.D. Joseph, Stability of fluid motions I & I Tracts in



722

N. Rupraiah, P. K. Srimant and R. FRIEDRICH

Natural Philosophy, Vol. 27, Springer (1976).

. B. S. Gottfried, A mathematical model of thermal oil

recovery in linear systems, Soc. Petro. Engng J. 5, 196
(1965).

. G. Veronis, On finite amplitude instability in thermo-

haline convections, J. mar. Res. 23, 1 (1965).

. D. A. Nield, The thermohaline Rayleigh—Jefferey’s pro-

blem, J. Fluid Mech. 29, 545 (1967).

. D. A. Nield, Onset of thermohaline convection in a

porous medium, Water Resources Res. 5, 553 (1968).

. N. Rudraiah, P. K. Srimani and R. Friedrich, Finite

amplitude thermohaline convection in a fluid saturated
porous layer, 7th Int. Heat Transfer Conf., Miinich
(1982).

8.

10.

11

12.

J. 8. Turner, Buoyancy effects in fluids, Cambridge
Monographs on Mechanics and Applied Mathematics,
p. 251 (1979).

. G. Veronis, Motions at subcritical values of the Rayleigh

number in a rotating fluid, J. Fluid Mech. 24, 545 (1966).
N. Rudraiah and D. Vortmeyer, Stability of finite ampli-
tude and overstable convection of a conducting fluid
through fixed porous bed, Wiirme-und Stoffiib. thermo

fluid Dyn. 11, 241 (1978).

P. Cheng, Heat transfer in geothermal systems. In
Advances in Heat Transfer, Vol. 14, p. 1. Academic Press
(1978).

E. R. Lapwood, Convection of a fluid in a porous
medium, Proc. Camb. Phil. Soc. 44, 508 (1948).

CONVECTION D’AMPLITUDE FINIE DANS UNE COUCHE POREUSE SATUREE PAR UN
FLUIDE A DEUX COMPOSANTS

Résumé—La stabilité linéaire et non linéaire de la convection par un fluide 4 deux composants, connue
comme convection thermohaline est considérée dans une couche poreuse horizontale chauffée par le bas.
L’analyse est basée sur les équations de Boussinesq-Darcy pour la convection bidimensionnelle avec
I’hypothése que les amplitudes de la convection sont petites. La théorie linéaire est basée sur 'analyse de
Fourier et les nombres de Rayleigh critiques sont déterminés pour les mouvements marginaux et surstables.
On trouve qu'un gradient vertical de soluté accompagne des mouvements surstables et on en donne
d’explication physique. L’étude de I'amplitude finie est basée sur une représentation tronquée des séries de
Fourier et le nombre de Rayleigh critique est déterminé. Les effets du nombre de Prandtl, du rapport des
diffusivités et du paramétre de perméabilité sur la convection sont étudiés. Le nombre de Nusselt Nu et son
analogue Nu® pour le soluté sont calculés et on trouve que ’effet du nombre de Prandtl est trés faible en
contraste des résultats de I'écoulement visqueux existant.

KONVEKTION MIT ENDLICHER AMPLITUDE IN EINER POROSEN SCHICHT, DIE MIT
EINER AUS ZWEI KOMPONENTEN BESTEHENDEN FLUSSIGKEIT GESATTIGT IST

Zusammenfassung—Die lineare und nichtlineare Stabilitdt der Konvektion einer aus zwei Komponenten
bestehenden Fliissigkeit, die als thermohaline Konvektion bekannt ist, wird in einer pordsen, von unten
beheizten Schicht betrachtet. Die Losung basiert auf den Boussinesq-Darcy-Gleichungen fiir zweidi-
mensionale Konvektion unter der Annahme, daBl die Amplituden der Konvektion klein sind. Das lineare
Verfahren basiert auf der Fourier-Analyse, und die kritischen Rayleigh-Zahlen werden sowohl fiir marginale
wie iiberstabile Bewegungen bestimmt. Es wird festgestellt, daB die Zunahme der Konzentration des
gelosten Stoffes mit der Hohe zu iiberstabilen Bewegungen fithrt, und es wird eine physikalische Begriindung
dafiir angegeben. Die Untersuchung fiir endliche Amplituden basiert auf einer abgebrochenen Fourier-
Reihen-Entwicklung, wodurch die kritische Rayleigh-Zah! bestimmt wird. Die Einfllisse der Prandtl-Zahl,
des Verhiltnisses der Diffusionskoeffizienten und der Permeabilitidtsparameter auf die Konvektion werden
untersucht. Die Nusselt-Zahl Nu und deren Analogon Nu fiir geloste Stoffe werden berechnet und gefunden,
dafB3 der Einflu3 der Prandtl-Zahlim Gegensatz zu bekannten Ergebnissen fiir zdhe Stromung sehr gering ist.

KOHBEKIMUA KOHEUHOW AMITJIMTYbl B MOPUCTOM CJIOE, HACBIIIEHHOM
JOBYXKOMITOHEHTHOH XWAKOCTbIO

Antoranus — [1poBesneHo MccneoBanue JIMHEHHOR W HEJMHEHHOM YCTOMYMBOCTM KOHBEKLMH [BYX-
KOMIIOHEHTHO# XHIKOCTH B HarpeB4eMOM CHH3y FOPH30HTAJILHOM TMOPHCTOM Clloe. AHAJIU3 OCHOBAH
Ha ypapHeHHSXx Byccunecka—/Japcu s ABYXMEPHON KOHBEKUMH B NPEANONONKEHHH MaJbiX aMILTHTY .
B pe3ynbTaTe NHHEHHOrO aHaaM3a 1o Metoay dypbe onpeleneHbl KpUTHUECKHE 3Ha4YeHUs Yucna Penes
KaK I NpenenbHLIX, TAK W CBEPXYCTOMYHBLIX [ABIDKeHMH. HaitleHo, 4TO BepTHXaJIbHBIH rpadneHT
PacTBOPHMOCTH TIPMBOJMT K YCTAHOB/IEHHIO CBEPXYCTOHYMBBIX ABWXKCHHUA M naHo dusuyeckoe 060-
CHOBaHHe 3TOro sBieHns. VccienosaHue KOHBEKLUHH KOHEYHOH aMMINTYAbI NPOBEAEHO € MOMOLIBIO
yceuenHblx psaos Pdypwe. OnpeneneHo kpuTHHeckoe 3HaueHue uucna Penesa. Mccnenosano BiusHMe
uncna [panarns, oTHoweHus ko3dduLHEeHTOB Tuddy3uM W napaMeTpa NPOHHIAEMOCTH Ha KOHBEK-
unio. Paccuuransbl 3Havenus yucaa Hyccenbta Nu u ero anasora Nu® 1isi pacTBOPEHHOrO BEILECTBA
M HalaeHo, YTO BJIMAHME 4Yucaa [lpaHaTiAs HECYLIECTBEHHO IO CPaBHEHMIO CO Cly4aeM TEYeHHs
BA3KHMX XHIKOCTEH.



